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ABSTRACT

EXPLOITING ROGUE SIGNALS TO ATTACK TRUST-BASED COOPERATIVE SPECTRUM

SENSING IN COGNITIVE RADIO NETWORKS

By David Jackson

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at

Virginia Commonwealth University.

Virginia Commonwealth University, 2013.

Major Director: Wanyu Zang, Ph.D.

Assistant Professor, Department of Computer Science

Cognitive radios are currently presented as the solution to the ever-increasing spectrum short-

age problem. However, their increased capabilities over traditional radios introduce a new dimension

of security threats. Cooperative Spectrum Sensing (CSS) has been proposed as a means to protect

cognitive radio networks from the well known security threats: Primary User Emulation (PUE) and

Spectrum Sensing Data Falsification (SSDF).

I demonstrate a new threat to trust-based CSS protocols, called the Rogue Signal Framing (RSF)

intrusion. Rogue signals can be exploited to create the illusion of malicious sensors which leads to

the framing of innocent sensors and consequently, their removal from the shared spectrum sensing.

Ultimately, with fewer sensors working together, the spectrum sensing is less robust for making correct

spectrum access decisions. The simulation experiments illustrate the impact of RSF intrusions which,

in severe cases, shows roughly 40% of sensors removed. To mitigate the RSF intrusion’s damage to the

network’s trust, I introduce a new defense based on community detection from analyzing the network’s

Received Signal Strength (RSS) diversity. Tests show a 95% damage reduction in terms of removed

sensors from the shared spectrum sensing, thus retaining the benefits of CSS protocols.
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Chapter 1

Introduction

This chapter covers the background of my research in the area of cognitive radio networks and their

security. Included are the topics of dynamic spectrum access, cooperative spectrum sensing, as well as

the common attacks against cognitive radio networks for comparison. Lastly, the section outlines my

contributions.

1.1 Cognitive Radios

Cognitive Radios (CR) are adaptive radios that are designed for improved performance and flexibility

in wireless communications over the traditional radios that are built upon the more rigid Application-

Specific Integrated-Circuit (ASIC) devices. Unlike their predecessors, cognitive radios can be pro-

grammed to have any of the following qualities: awareness of their operating environment and their

own capabilities, autonomous operations to achieve the radio’s goal, and the ability to learn and adapt

from past experiences [1]. Their most distinguishing feature is autonomous frequency agility, the abil-

ity to change channels dynamically over a broad range of radio-frequency electromagnetic spectrum

without the need of user interaction. In contrast, traditional radios broadcast on a single, fixed fre-

1
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(a) Inefficient allocation of spectrum bands
(b) Spectrum shortage for mobile broadband

Figure 1.1: The spectrum shortage problem depicted

quency channel such as the AM/FM radio stations, television networks, cell phones, and so on. In

these examples, both the broadcaster and listener have to be tuned to the same frequency to receive a

particular service such as music from an FM radio station.

In recent years, the growing demand for wireless services shows an inevitable overcrowding of

the spectrum bands, in large part due to the rapid increase of wireless mobile services. The Federal

Communications Commission (FCC) has assigned spectrum bands to licensed users for exclusive use

on a long term basis, precluding anyone else from access [2]. Yet, analysis of the spectrum bands

clearly indicate that current FCC policies have created severely under-utilized spectrum bands (i.e.

unused wireless channels), causing a bottleneck for new wireless services. Fig. 1.1a [2] depicts these

under-utilized spectrum bands across the usable radio-frequency spectrum. Fig. 1.1b [3] depicts an

example of the spectrum demand for mobile broadband services surpassing the available spectrum as

early as mid-2013. This example illustrates the need for innovative solutions to alter the trajectory of

overcrowded spectrum bands. Dynamic Spectrum Access (DSA) is the proposed solution to alleviate

the overcrowding of bands by allowing licensed users, also known as primary-users (PUs), to share

unused spectrum with non-licensed secondary-users (SUs) in an opportunistic fashion [2, 4]. An ex-

ample of a primary network consists of a TV broadcasting station (i.e. the primary transmitter) and the

corresponding subscribed viewers (i.e. the primary receivers) [5, 4].

2
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Cognitive Radios are the devices that enable DSA due to their ability to scan spectrum bands

and locate the best available channels on a non-interference basis [6]. The exact definition of cognitive

radios has evolved and branched off into different meanings. The FCC defines cognitive radios as “a

radio system whose parameters are based on information in the environment external to the radio sys-

tem.” [7] The National Telecommunications and Information Agency (NTIA) has proposed cognitive

radios to be defined as “a radio or system that senses its operational electromagnetic environment and

can dynamically and autonomously adjust its radio operating parameters to modify system operations,

such as maximize throughput, mitigate interference, facilitate interoperability, and access secondary

markets.” [7] However, Joseph Mitola was the first to coin the term “Cognitive Radios” in 1999 and

explained it as an intelligent agent that could search out ways to deliver services and adapt the network

protocol stack to better satisfy the user’s needs [8]. The key aspects associated with Mitola’s vision of

cognitive radios is that they are [7]:

• Aware of surrounding environmental conditions (e.g. the interference for some channel) and the

radio’s internal state such as the operational parameters for some wireless service;

• Adapting to its environment in real time (e.g. switching to a less noisy channel) to satisfy the

requirements of some wireless service (e.g. message integrity or Quality-of-Service);

• Reasoning on observations to make the best known decisions, which include how to adapt to a

particular scenario;

• Learning from previous experience to improve its reasoning capabilities; and

• Collaboratingwith other devices to make decisions based on collective observations and knowl-

edge.

These key features require the implementation of artificial intelligence algorithms as an integral

part of the CR. However, the research community remains divided on howmany, and the scope of, these

3
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features a radio must possess before it is considered a CR. The first large scale standard for cognitive

radios, the IEEE 802.22, is primarily focused on frequency agility that addresses the mitigation of

interference to PUs [7]. Although cognitive radios are associated with frequency agility and DSA,

neither of these features alone account for the main intelligent attribute that cognitive radios were

initially known for.

Regardless of how cognitive radios are being interpreted, they are being pushed as the means to

solve the spectrum shortage problem by utilizing much of the untapped spectrum bands as illustrated

in Fig. 1.1a. The secondary network, consisting of cognitive radios, is given permission to coexist

in licensed channels under two preconditions mandated by the FCC: (1) giving spectrum priority to

licensed users and (2) minimizing interference to licensed users. The faster the SUs can detect the pri-

mary signal and vacate the licensed channels, the smaller the interference to the PUs, thus allowing then

the secondary signals to collide less frequently with the primary signal. For this reason, the secondary

network must achieve accurate spectrum sensing to know exactly when PUs occupy the channel.

1.2 Spectrum Sensing Methods

Energy detection is perhaps the simplest and most common type of spectrum sensing due to its low

cost and the fact that it requires no prior knowledge about the signal characteristics of PUs [9]. An

energy detector infers the existence of a PU based on the measured Received Signal Strength (RSS),

but it cannot distinguish between PUs and SUs on signal strength alone. To overcome this, all SUs

must halt transmission simultaneously in order to listen for the primary signal in a process called the

quiet period.

Signal feature detection is an alternative technique that uses either cyclostationary feature de-

tection or matched filter detection to capture special characteristics of a primary signal. However,

relying solely on signal feature detection may not be adequate to authenticate the primary signal. For

4
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example, in a primary network of subscribed TV viewers, an attacker can transmit previously recorded

TV signals that replicate the characteristics of the primary signal [10]. Here, the signal feature detec-

tion would fail to differentiate the attacker from the TV broadcasting station. Moreover, conventional

replay-attack defenses that require Public Key Infrastructures (PKI) cannot be applied on CR networks,

since the FCC mandates require the secondary network to be self-sufficient in detecting the primary

signal without any action from the primary network [6]. Hence, key sharing between the primary and

secondary networks is not a viable option.

1.3 Cooperative Spectrum Sensing

The cornerstone of the IEEE 802.22 requires the secondary network to surrender channel occupation

immediately after detecting the primary signal within the contour region, an area where the primary

network is to be protected from interference. Yet, perhaps the biggest obstacle to commercializing

cognitive radios is guaranteeing a minimal level of interference to the primary network. This requires

that cognitive radios have the ability to reliably detect, in real time, the presence or absence of a primary

signal from a given spectrum band. Otherwise, these cognitive radios can unknowingly transmit signals

simultaneously with the primary transmitter, causing unacceptable levels of interference to nearby PUs.

Such unintended interference can arise from the hidden node problem. Fig. 1.2a depicts an SU

obscured from the primary transmitter due to obstacles in the environment, in what is called shadow

fading. Hence, the SU continues to occupy licensed spectrum bands simultaneously with nearby PUs.

Additionally, an SU may not detect the primary signal because of multipath fading. This is caused by

multipath propagation, the phenomenon that results in a radio signal reaching the receiving antenna

in more than one path. In other words, wireless radio signals bounce off physical obstructions, prop-

agating into new signal copies each time, and culminate into a less audible and weaker signal at the

receiver. Fig. 1.2b depicts an SU unable to detect the primary signal due to multipath propagation.

5
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Primary Transmitter

(a) Shadow Fading (b) Multipath Fading

Figure 1.2: Causes of the hidden node problem

Research results from [2] indicate that shadow fading and multipath fading can be alleviated

by requiring multiple SUs to cooperate with each other to conclude the spectrum availability. This

collaboration of sensors, calledCooperative Spectrum Sensing (CSS) has been proposed as an effective

approach for boosting the detection of primary signals in CR networks [4, 9]. In centralized CSS, the

SUs submit their sensor reports to the fusion center (FC), which is a server for aggregating and cross-

examining the network’s sensor reports for a more robust analysis of the spectrum availability. Here,

the FC collects the network’s sensor reports and outputs a global decision to notify SUs if they can

access a licensed spectrum band. In decentralized CSS, each CR operates as a local FC such that each

node makes a local decision on spectrum availability based on its neighbors’ data.

1.4 Common Attacks

When a PU is detected on a licensed spectrum band, all SUs must vacate and avoid that spectrum

band. In contrast, when an SU is detected, the other SUs may share the channel resources through

techniques like Time-Division-Multiple-Access [4]. However, an unauthorized transmission similar

6
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to the primary signal can induce an attack called the Primary User Emulation (PUE) which is when

a malicious SU masquerades as a PU in order to monopolize the spectrum resources. For example,

a malicious SU can induce a PUE attack by transmitting signals that emulate the characteristics of a

TV broadcast station in order to deceive the rest of the secondary network. A successful PUE attack

is a false alarm of the primary signal that only affects the secondary network, such that SUs vacate the

spectrum band and give the attacker full spectrum access. This can be regarded as a Denial-of-Service

(DoS) attack and removes the benefits of DSA.

In contrast, a Spectrum Sensing Data Falsification (SSDF) attack is when malicious SUs inten-

tionally share inaccurate spectrum sensing results in order to change the FC’s decision on spectrum

availability. Cognitive radios are employed with Software-Defined Radios (SDRs) that supports the

operational flexibility required for DSA, which differs from traditional hardware-based radios [4]. This

software layer exposes cognitive radios to the threat of malicious software that could manipulate the

spectrum sensing results. Unlike a PUE attack, an SSDF attack is not confined by the laws of physics

and functions by rewriting the sensor reports at the software layer, such as the RSS values for energy

detectors. As such, SSDF attacks have the flexibility to promote the illusion or concealment of the

primary signal.

To counter SSDF, various trust models have been proposed to protect CSS [10, 11, 12, 13, 14].

These trust-based solutions build reputations of reporting sensors and filter out sensing reports from

those with low reputations. Thus, they can single out attackers andmitigate their influence in the shared

spectrum sensing.

1.5 Contributions

I find that the sensor reputations are exploitable by rogue signals in trust-based CSS protocols. In sec-

ondary networks, it is very hard to conclude the root cause of bad sensor reports; such asmalfunctioning

7
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sensors, the hidden node problem, SSDF attacks, and rogue signals. The trust-based protocols treat all

inaccurate sensor reports the same way in that they suffer reputation loss. As a result, attackers can

cause inaccurate sensor reports by transmitting narrow rogue signals in order to destroy the reputation

of the targeted sensors. Accordingly, I present a new threat to a variety of trust-based CSS protocols,

which I name the Rogue Signal Framing (RSF) intrusion. To launch this attack, I exploit directional

antennas to isolate a radiation pattern to a group of sensors in close proximity. The outcome is the

emulation of an SSDF attack by having rogue signals raise the RSS of a group of sensors much higher

than those outside the rogue signal’s reach. This contrast leads to innocent sensors being treated as

malicious, and consequently removed from the shared spectrum sensing.

To counteract this new threat, I propose a new defense scheme, which I named the RSF Cluster-

ing Defense (RCD) module, that looks for dense clusters of sensors from the proximity and similarity

of sensor reports in order to look for isolated radiation patterns caused by the RSF intrusion. Thus,

the RCD module can distinguish sensors under the RSF intrusion and mitigate the trust damage. I also

show that the RCD module is resilient from exploitation by SSDF attack.

The rest of this paper is outlined as follows. Chapter 2 reviews common CR network attacks

and trust-based CSS protocols. Then, I present the system model in Chapter 3, and show the details

and analysis of the RSF intrusion in Chapter 4. I propose the RCD module, which defends against the

RSF intrusion, evaluate its performance in Chapter 5, and conclude the paper in Chapter 6.

8
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Chapter 2

Related Works

My work is mostly related to the following attacks and defenses in CR networks.

While CR networks are vulnerable to a variety of attacks [6], there are two attacks that have

received much attention. One such attack is the Primary User Emulation (PUE) [15, 6], where an

attacker masquerades as the primary transmitter from the vantage point of its neighbors. The other

attack is the Spectrum Sensing Data Falsification (SSDF) [4, 10], in which compromised users falsify

the local spectrum sensor reports in order to obscure or create the illusion of the primary signal at the

FC [16]. Both attacks affect the FC’s perception of the primary signal, ultimately leading to wrong

decisions of spectrum accessing. In contrast, the RSF intrusion disrupts the trust between the FC and

sensors, which makes the spectrum sensing less stable.

Tom Clancy et al. [6] lists a host of threats such as sensory manipulation attacks, belief ma-

nipulation attacks, and objective function attacks to cognitive radios with embedded learning engines.

However, the RSF intrusion focuses on CR networks with trust schemes and cooperative spectrum

sensing, allowing it to work independently of the learning engine.

Bauer et al. [24] demonstrates an attack on localization techniques with directional antennas.

9
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The choice of environment for testing the attack was designated for the IEEE 802.11 Wireless Local

Area Network (WLAN) environment in an office floor. With the exception of attacking with direc-

tional antennas, the RSF intrusion differs in both the environment and objective. In particular, the RSF

intrusion is intended for the IEEE 802.22 Wireless Regional Area Network (WRAN) environment and

damages sensor reputations instead of corrupting localization techniques.

To defeat the PUE and the SSDF attacks, several trust-based schemes were developed. Chen

et al. [10] presented a sequential probability ratio test (SPRT) weighted by reputation to mitigate the

impact of SSDF attacks. Their algorithm collects sampling votes on the detection or absence of the

primary signal, weighing each vote according to the sensor’s reputation. For every vote identical to

the global decision, the sensor’s reputation is incremented, such that their vote carries more weight in

future decisions made at the FC. Kaligineedi et al. [11] presented a pre-filtering average combination

scheme, where the scheme’s filters are responsible for (1) removing extreme outlier sensor reports and

(2) ignoring sensors that have continuously deviated from the majority over a certain period of time.

Arshad et al. [13] presented a beta reputation system model for hard-decision CSS protocols. Similar

to [10], the sensors are rewarded for agreeing with the global decision, and otherwise penalized. The

similarity of these defense approaches is to build reputations for spectrum sensors and thus filter out

sensing reports from less trustworthy sensors. However, my work shows that the reputations can be

manipulated all too easily, resulting in good sensors being framed and removed from shared spectrum

sensing.

10
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Chapter 3

System Model

This chapter discusses the environment used for simulating the Rogue Signal Framing intrusion and its

defense. This includes the network layout, the propagation models, the environment’s shadow fading,

and the attacker’s method.

3.1 System Components

Sensor

Primary Transmitter

0,0

n

n

Attacker

D

Fusion Center

Figure 3.1: Model of Simulation Environment

Without loss of generality, I use a system as shown in Fig. 3.1 to discuss the proposed security

11
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issues. Within the network area, the sensors si are randomly distributed and the attacking antennas

are positioned at the center. The sensor devices are built in the cognitive radios and operated by the

SUs. Spectrum sensing occurs in scheduled time intervals where all SU communications halt, i.e. the

quiet periods, so that the SU network can listen for the primary signal. The fusion center FC then

collects the sensor reports and cross-examines them to make a global decision GD on the availability

of some channel f0. The GD is a binary hypothesis made after each quiet period that either concludes

the absence (H0) or existence (H1) of the primary signal. Energy detection is the designated spectrum

sensing method, so the sensors are only capable of measuring the RSS locally. However, depending

on the CSS protocol, the sensor reports may only share the local decision (i.e. H0 or H1) instead of

the RSS measurement. I assume the sensors are Customer Premise Equipment (CPE) such that their

positions are fixed and operate within the households of consumers, and thus forms a static network

of sensors, coinciding with the first official standard, the IEEE 802.22, for a wireless regional area

network of CPE cognitive radios that have secondary access to the TV frequency spectrum [5].

...

Fusion Center

s0

R0

s1

R1

s2

R2

sN

RN

Trust

ManagerRCD

GD

H0

H1

spectrum f0

Figure 3.2: Model of Cooperative Spectrum Sensing

Fig. 3.2 shows the flow diagram of operations in my cooperative spectrum sensing model. When

a quiet period starts, the SU sensors listen on channel f0 for the primary signal. Afterward, the SUs

deliver their sensor reports to the FC for concluding the spectrum availability and broadcasting the GD

to the secondary network. For trust-based CSS protocols, the final step includes storing and updating

the sensor trust scores based on the similarity of the sensor reports with the GD, which happens in

the trust manager module. The RCD module in Fig. 3.2 is my proposed solution to protect the trust

manager. Later in Chapter 5, I explain the RCD module in full detail.

12
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3.2 Propagation Model

I use the Free Space propagation model (watts) to represent the nearby line-of-sight channels of rogue

directional antennas [17]:

PFS(d) =
PtGtGrλ

2

(4πd)2
(3.1)

where λ denotes the wavelength (meters), and Gt and Gr the antenna gains of the transmitter

and receiver, respectively. I use the stochastic Rayleigh model to portray a more realistic simulation of

the inherent noisy nature of wireless channels [17]. The stochastic equation for the power flux density

(watts) is [18]:

Pray(PFS(d)) = PFS(d)
√
r21 + r22 (3.2)

where r1, r2 ∼ N (0, 1).

The greatest factor to affect the RSS (besides attenuation) is the shadow fading gain. The authors

in [19, 20] state that realistic shadow fading is statistically correlated to proximity, such that the shadow

fading gain is typically more similar for any two sensors the closer they are to each other.

For a more realistic system model, I generate a shadow fading spatial map that is derived from

the convolution technique as presented in [20]. This requires a two-dimensional spatial map [x, y] of

shadow fading values, denoted as Ls[x, y], with distribution properties of a zeromean and some standard

deviation σL, i.e. Ls[x, y] ∼ N (0, σL).

Each position in Ls[x, y] is correlated with another position on a logarithmic scale based on their

proximity, which has been shown to be a sufficient representation of real environments [19, 20]. The

normalized logarithmic correlation can be expressed by the function [20]:
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α(⃗v) = exp
(
−∥⃗v∥ ln 2

Dcorr

)
(3.3)

where v⃗ is the change in position [∆x,∆y], andDcorr is a distance threshold for applying the cor-

relation calculations. Next, each position (x, y) needs to be cross-correlated with all positions by [20]:

L2[x, y] =
Nx∑
i=1

Ny∑
j=1

L[i, j]α([x− i, y− j)]) (3.4)

where [x, y] is the current position being correlated with all other positions [i, j] from Eq. 3.3. The

equation is repeated until x and y iterate through the discrete ranges 1 ≤ x ≤ Nx and 1 ≤ y ≤ Ny where

Nx×Ny is the map’s resolution. However, equation (3.4) distorts the shadow fading map’s distribution,

which conflicts with the requirement of having Ls[x, y] ∼ N (0, σL). This can be corrected by applying

the following equation to the entire shadow fading map [20]:

Ls[x, y] = (L2[x, y]− µL2)
σL

σL2
(3.5)

where µL2 and σL2 are L2’s mean and variance, respectively. Fig. 3.3 shows my shadow fading

spatial map Ls[x, y] as a 3D mesh that was generated by Eq. 3.5.

The RSS Ri for any given sensor si is generated by [21]:

Ri =


N (µω, σω), H0

10 log10(Pray(PFS(dij))) + Ls[xi, yi], H1

(3.6)

where dij is the distance between the ith sensor and the jth rogue antenna, µω is the noise power

mean, and σω is the noise variance. The null hypothesis H0 is the conjecture of the primary signal’s
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Figure 3.3: A simulated shadow fading spatial map, from Eq. 3.5

absence. The alternative hypothesis H1 is the conjecture of the primary signal’s presence. I assume

that the channel bandwidth is much larger than the coherent bandwidth, so the effects of multi-path

fading are negligible [5]. Hence, I do not include the multipath fading gain in equation (3.6).

3.3 Directional Antenna Model

My simulations employ directional antennas to transmit rogue signals. The motivation for rogue anten-

nas is explained in Chapter 4. Since the antenna radiates in a smaller area surface, the signal strength

is compressed, increasing the power density (i.e. the RSS). The directive gain of an antenna is [22]:

G(θ, ϕ) = (4πr2)
(

4
πr2sin(θ)sin(ϕ)

)
(3.7)

where θ and ϕ are the vertical and horizontal angles of the beamwidth, respectively. For simpli-

fication, I assume θ = ϕ for equation (3.7). Sensors located outside the area of the radiation pattern

are unaffected, which is to say they are out of range of the rogue signal. To determine which sensors

are attacked, I need to calculate the angle between the attacked sensor and the directional antenna. The

angle between position p⃗i of the ith sensor and position p⃗j of the jth antenna is:
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θij = arccos
(

p⃗i · p⃗j
∥p⃗i∥∥p⃗j∥

)
(3.8)

where p⃗i, p⃗j ∈ R2. The ith sensor can be represented as affected if θij falls between the lower and

upper beam angles θl, θu of the jth transmitter such that θl ≤ θij ≤ θu.

θ

φ

Beamwidths

Rogue Antenna

(a) Directive Gain

Rogue Antenna

u

l

ij

Sensor

(b) Beamwidths

Figure 3.4: Model of Directional Antennas
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Chapter 4

Rogue Signal Framing Intrusion

In this chapter, I introduce the Rogue Signal Framing (RSF) intrusion and explain the vulnerability of

sensor reputations to rogue signals and the motivation for attacking with directional antennas. After-

ward, I demonstrate the impact of the RSF intrusion on sensor reputations through various simulations.

4.1 Security Enforced at the Physical Layer

In the Cooperative Spectrum Sensing paradigm, the spectrum sensors (i.e. the physical layer) provide

local signal detection and then reports the results to the FC. Afterward, the FC validates the signal

authenticity through cross-examination of the network’s sensor reports, as portrayed in Fig. 3.2. For

this reason, verifying the source of a signal at the physical layer is incredibly difficult, especially for

energy detectors that can only observe the RSS. Authenticating at the physical layer removes the option

of cryptographic means to identify the source since it is usually done at the network layer [6]. Further-

more, authentication of the primary signal at higher network layers, e.g. packet headers, is prohibited

as a result of restrictions prescribed by the FCC. One restriction in particular states that “ no modifi-

cation to the incumbent system should be required to accommodate opportunistic use of the spectrum
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by secondary users” [15]. In other words, the primary network is not obligated to assist the secondary

network in spectrum sensing, but the secondary network must attest to accurate spectrum sensing so

that they do not interfere with the primary network. As such, solutions that involve any interaction

between the primary and secondary networks cannot satisfy the FCC’s stringent requirements. The

motivation behind the separation of communication between the primary and secondary network is to

avoid placing additional burdens on the licensed users for the sake of the SUs.

Cognitive radios introduce a new dimension of threats into wireless networks. To achieve highly

flexible operating characteristics required for DSA, cognitive radios are implemented as an exten-

sion of the Software-Defined Radio (SDR) platform instead of hardware-driven Application-Specific

Integrated-Circuit (ASIC) devices seen in conventional radios [4]. From a security standpoint, signal

transmission in conventional radio communications is more predictable due to the static allocation of

spectrum bands to specific services and the regulation of the manufactured ASIC-based radios.

Sensor reputations and CSS are often used to perform robust and accurate spectrum sensing

without having to communicate with the primary network, but the question remains on how effective

trust-schemes are at satisfying the FCC requirements. The extended programmability and the opera-

tional flexibility of cognitive radios have dramatically increased the attack surface, in that it becomes

possible to create a wide range of authorized and unauthorized waveforms with a low-cost consumer

devices [23]. In an NSF 2009 workshop, the FCC had raised the question, “What authentication mech-

anisms are needed to support cooperative cognitive networks? Are reputation-based schemes useful

supplements to conventional Public Key Infrastructure (PKI) authentication protocols?” [23] Later in

this section, I address certain issues of enforcing reputation-based schemes at the physical layer.
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4.2 Trust Vulnerability

CR network protocols must be self-reliant in minimizing interference to the primary network which

requires accurate spectrum analysis. In the case of SSDF attacks, trust models have been effective at

removing malicious sensors from the shared spectrum sensing [10, 11, 12, 13, 14]. More specifically,

sensors are labeled untrustworthy by the trust manager when they have a consistent history of abnormal

sensor reports. The trust manager judges each sensor equally, in particular the unreliable sensors with-

out regard to the underlying cause. These causes include malfunctioning sensors, malicious sensors,

and sensors affected by the hidden node problem.

Treating all sensors solely based on their reports may at first seem appropriate, but this can also

be perceived as an overly sensitive intrusion detection system. Rogue signals can raise a sensor’s RSS

well above what is expected, especially in the absence of the primary signal. A prolonged rogue sig-

nal on the same group of sensors could cause a sharp contrast of sensor reports from the unaffected

neighbors, thus appearing malicious and no different than SSDF. Consequently, the security protocol

brands these sensors as untrustworthy and removes them from the shared spectrum analysis for as long

as the stigma remains. As such, the RSF intrusion constitutes as an exploitation of the trust model. In

the context of CSS, I define the term Rogue Signal Framing intrusion as follows,

Definition: Rogue Signal Framing intrusion breaks the trust between the fusion center and a

group of sensors via rogue signals to create the illusion of malicious sensors

To launch this attack, directional antennas are used to isolate a radiation pattern to a group of

sensors within proximity, and thereby cause them to report abnormally high RSS values relative to

their neighbors who are unaffected by the rogue signal. This scenario emulates an SSDF attack where

innocent sensors are perceived as attackers, and consequently removes them from the shared spectrum

19



www.manaraa.com

sensing. The RSF intrusion should be treated differently than malfunctioning/malicious sensors be-

cause the outcome is a long-term consequence. In other words, well-behaved sensors framed by rogue

signals are ignored over an extended period of time, even after the rogue antenna stops transmitting.

Attackers can leverage the framing of sensors as a stepping-stone attack in order to soften the defense

of trust-based CSS protocols for future attacks, such as PUE and SSDF attacks.

The CSS paradigm can be modeled in the context of the Byzantine Fault Tolerance problem.

Chen et al. [10] described a Byzantine failure as a malfunctioning sensor or an SSDF attack. In both

cases, the sensors perform unreliable local spectrum sensing that could ultimately lead the FC to make

wrong spectrum decisions like the misdetection and false alarm. Amisdetection is when the FC decides

H0 when in fact the primary signal is present, and may result in unacceptable interference to the PUs.

Conversely, the false alarm is when the FC decides H1 when the primary signal is absent, and causes a

DoS of spectrum resources for secondary users.

The RSF’s ability to damage sensor trust does not directly influence the FC’s decision. Instead,

the RSF lowers the system’s fault tolerance, because the FC has to rely on less sensors to infer the

presence of the primary signal. Hence, the RSF weakens the reliability of shared spectrum sensing for

trust-based CSS protocols in the aftermath of the intrusion.

4.3 Motivation for Directional Antennas

Isotropic antennas transmit in all directions, maximizing their coverage. In a network of energy detec-

tors, the RSF attacker may need to limit the rogue antenna’s coverage in order to avoid a successful

PUE, which is an attack on the FC. Directional antennas make it easier to suppress its influence on the

FC and frame the targeted sensors, and thus becomes an attack on the trust manager instead. Thus, di-

rectional antennas provide a greater degree of control over the isotropic antennas for damaging sensor

reputations.
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The second advantage is that directional antennas are difficult to localize (i.e. pinpoint) because

of their ability to transmit rogue signals with narrow and asymmetrical radiation patterns. Worse yet,

the network’s RSS diversity is sensitive to any changes to the beam-direction and beamwidth, further

complicating the localization. Bauer et. al. [24] empirically tested directional antennas against 802.11

localization algorithms which resulted in very high errors. Isotropic antennas, however, leave massive

RSS finger prints in a network of energy detectors due to their wide and uniform radiation pattern.

Chen et. al. [15] proposed an RSS-based location verification scheme to detect and pinpoint PUE

attacks enforced by a dense network of sensors. However, this scheme was not tested or tailored for

pinpointing directional antennas.

4.4 Two Types of Framing

To create an illusion of malicious sensors, there needs to be a separate group of well-behaved sensors

to delineate good-from-bad sensor reports. Unfortunately, classifying sensors as either honest or mali-

cious is speculative, as the FCC regulations remove any obligations of the primary network to assist the

secondary network [6]. Hence, the secondary network is left to assume channel occupancy (i.e. global

decision) with hypotheses like H0 and H1. Therefore, if all sensor reputations are in good standing, the

global decision is typically determined by the majority of sensors.

This is especially true for hard-decision combining, which is when the FC makes a global deci-

sion based on a collection of local decisions, reported by sensors individually, in the form H0 and H1.

Protocols FA and FC use hard-decision combining with sensor reputations. Alternatively, the FC can

perform soft-decision combining to determine the global decision based on a collection of non-discrete

sensor observations, e.g. energy detectors that report the RSS instead of a local decision.

Soft-decision combining benefits from using more descriptive data, but also becomes more vul-

nerable to outliers such as in instances where malicious sensors report abnormally high RSS measure-
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ments. Generally, CSS protocols are designed to reduce the impact of outliers or remove them entirely,

but this still leaves the majority of sensor reports as the determinant of the global decision, just like

in hard-decision combining. As such, a majority of sensors will typically decide the global decision,

even if that majority is comprised of malicious sensors or affected by a wide-reaching rogue signal, as

seen in the case of a PUE attack. In such a case, the FC concludes the disagreeing minority of sensors,

even if well-behaved, are presumed inaccurate. Hence, we define two outcomes of rogue signals with

regard to damaging sensor reputations, called Type-1 Framing and Type-2 Framing:

Rogue Transmitter

(a) Type-1 Framing

SUs 
obsc

ure
d

(Primary User Emulation)

Rogue Transmitter

(b) Type-2 Framing

Figure 4.1: The two outcomes of rogue signals in trust-based CSS protocols

• Type-1 Framing: a majority of sensors not affected by rogue signals reportH0, so the unaffected

minority of sensors report H1 and appear malicious to the FC, resulting in lower reputation

• Type-2 Framing: a majority of sensors affected by rogue signals report H1, so the unaffected

minority of sensors report H0 and appear malicious to the FC, resulting in lower reputation

Prior to this section, Type-1 Framing has been the designated type of trust manipulation to de-

scribe the RSF intrusion. Type-2 Framing, which is also a result of rogue signals, is worthy of discus-

sion for simultaneously accomplishing an RSF intrusion and PUE attack. Both attacks are manifested
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through radio antennas and can only be distinguished by the attack’s outcome, such as misleading the

trust manager (via RSF) or the FC (via PUE). Hence, a carefully chosen attack coverage that achieves

Type-2 Framing could in fact result in a successful RSF and PUE attack. To my knowledge, the fact

that a PUE attack may inadvertently affect sensor reputations has not yet been considered in previous

literature. I believe Type-2 Framing is important in that it brings about a greater understanding of PUE

attacks against trust-based CSS protocols, which is a very common paradigm of security protocols in

CR networks.

4.5 Trust Damage

The main goal of the RSF intrusion is to damage the trust between the FC and network sensors. Thus,

I use the following equation to measure the network’s trust damage TΣ[q] on quiet period q with:

TΣ[q] =
1

TΣ[0]

∑
si∈S

ti[q] (4.1)

where ti[q] is the trust score of sensor si ∈ S and TΣ[0] is the initial total trust of the secondary

network. For each trust-based CSS protocol, the trust score is represented differently. In order to

compare the trust damage between each protocol, I normalize the trust score ti such that ti[q] ∈ [0, 1]

in Eq. 4.1.

In each quite period, a group of sensors may lose their trust due to the RSF intrusion, so TΣ[q]

changes from one quiet period to the next. As the time passes on, sensors become more susceptible

to trust damage under the RSF intrusion, so it is expected TΣ[q] will decrease as the number of quiet

periods q increases.
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(a) RSF-15
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(b) RSF-30
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(c) RSF-45

Figure 4.2: RSF Impact - measures trust damage, from Eq. 4.1

4.6 Attack Evaluation of Type-1

To test the RSF intrusion, I borrow three trust-based CSS protocols, mentioned earlier in Chapter 2 and

denote them as FA, FB, and FC from [10, 11, 13], respectively.

I make the following assumptions on the simulation’s environment according to an IEEE 802.22

WRAN environment that encompasses UHF/VHF TV bands between 54 MHz and 862 MHz [5]. The

simulations have 400 sensors located inside a 2000× 2000 grid. It is assumed here that the incumbent

broadcasting station operates at the UHF frequency of 615 MHz. Like Fig. 3.1, there are four rogue

directional antennas facing the cardinal directions and positioned on the map’s center. Protocols FA,

FB, and FC are tested on three RSF intrusion scenarios, labeled as RSF-15, RSF-30, and RSF-45, and

have antenna beamwidths of 15◦, 30◦, and 45◦, respectively. The simulation parameters are listed in

Table 4.1.

Fig. 4.2 shows the network’s total trust TΣ[q] over 100 quiet periods for each scenario. De-

pending on the protocol and different evaluation environment, the RSF intrusion removed nearly 15%

to 45% of the network’s total trust, correlating to the percentage of sensors removed from the shared

spectrum sensing. As expected, TΣ[q] decreases, eventually plateauing over time as a result of sensors

having no more reputation to possibly lose.
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Table 4.1: Simulation Parameters

Parameter Value Description
Ns 400 Sensors
Nr 4 Rogue antennas
Nx 2000 m Map length
Ny 2000 m Map width
γθ -92 dBm Sensor sensitivity
f0 615 MHz Channel frequency
µω 95.2 dBm Noise power mean
σω 0.3 dB Noise power std
dθ 150 m Distance threshold
σL 4.5 dB Shadow fading variance

In Fig. 4.2, the change in the network’s total trust, ∆TΣ[q], per quiet period is different for

protocolsFA, FB, andFC, because a sensor’s trust score is adjusted differently for each protocol. Hence,

these protocols behave differently against rogue signals, but the overall trend is a net loss of total trust

TΣ[q] as q increases. I briefly list the general differences in the three protocol designs that led to the

unequal outcomes of trust damage:

• Protocol FA: sensor trust is adjusted based on whether its local decision agrees with the FC’s

global decision; only applies to a random sample of sensors with varying sizes

• Protocol FB: the rate and scope of trust damage depends on the RSS variance because the FC’s

acceptance threshold of RSS measurements changes with it

• Protocol FC: sensor trust is adjusted based on whether its local decision agrees with the FC’s

global decision; applies to all sensors

From Fig. 4.2, I observe that both protocols FA and FC start to plateau, because the trust ti of

attacked sensors eventually approach 0, causing the∆TΣ[q] to become stagnant over time. Conversely,

protocol FB differs in that it does not have local decisions to compare to FC’s global decisions. Instead,
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Figure 4.3: Trust damage over 100 quiet periods with respect to beamwidth, and the corresponding
PUE success rate

it uses a dynamic threshold for deciding malicious sensor reports which scales with the RSS variance.

As the attack coverage increases from RSF-15 to RSF-45, so does the RSS variance and the FB’s

behavior towards the RSF intrusion.

4.7 Attack Evaluation of Type-2

Fig 4.1 illustrates two cases of trust damage when the secondary network is bombarded by rogue sig-

nals: Type-1 Framing when the minority of sensors are within the attack coverage, and Type-2 Fram-

ing when the majority of sensors are within the attack coverage. Assuming the network’s trust is in a

healthy state, the sensors that disagree with the global decision will be presumed malicious. However

in Type-2 Framing, the sensors outside the attack coverage will experience trust penalties.

To show this, I tested for the number of attacked sensors and PUE rate with respect to antenna

beamwidth to identify whether trust damage occurs during a PUE attack, or at least from a rogue signal

with a wide attack coverage. I followed the same system parameters from Table 4.1. The RSF is

launched for a duration of 100 quiet periods with a transmission power of 10 mW for each integral

beamwidth, from 10◦ to 70◦. The recorded trust damage is based on Eq. 4.1 with a fixed quiet period
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q = 100.

The simulation results of Type-2 Framing are depicted in Fig. 4.3 which shows the trust damage

TΣ[100] and PUE success rate (%) with respect to antenna beamwidth θ◦. Trust damage is evident

in all three protocols during successful PUE attacks where the trust damage and PUE success rate are

both above 0. In cross examining these results, a negative correlation can be observed between the

trust damage and the PUE success rate, especially around the 60◦ beamwidth mark. Hence, I use these

results to reinforce the notion of Type-2 Framing as a result of rogue signals from Fig. 4.1b.
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Chapter 5

Rogue Signal Framing Defense

This chapter introductes the RSF Clustering Defense (RCD) module that operates in three steps: 1)

analyze the RSS diversity, 2) infer the presence of rogue signals from the first step, and 3) identify

and protect the sensors from the rogue signal if detected. The defense relies on the fact that directional

antennas leave isolated radiation patterns that form dense communities of sensors. These sensors report

the existence of the primary signal, either in the form of a local decision or high RSS measurements.

However, malicious sensors can perform SSDF attacks from the software layer without the need of

rogue signals, and thus operates outside the physical limitations of signal properties. Therefore, I look

toward a solution involving community detection and cluster analysis of the sensor network to identify

an RSF intrusion.

5.1 Overview of Networks and Clustering

This section briefly examines the necessary network terms and concepts for better understanding the

RCD algorithm and its motivation. I use graph partitioning and community detection as the basis for

discovering clusters of RSF-attacked sensors. To partition the graph in a meaningful way, I assume
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the nodes (i.e. sensors) have discrete characteristics such as a type or class. In my system model, the

sensors are classified based on their local spectrum decision such that a given sensor si has a corre-

sponding class ci where (ci = −1) if si reports H0 and (ci = 1) if si reports H1. This allows for the

measuring of the network’s assortative mixing, a term defined as the pairing of nodes with the same

class [25]. However, the network of sensors also needs meaningful edges for community detection.

The RCD module pairs any two sensors si, sj based on their class ci, cj and their mutual distance dij

from each other in order to observe spatial clustering.

The goal of the RCD module is to find an isolated and strongly concentrated group of sensors

that report H1. The Kronecker’s Delta Function δ(·) is a commonly used piecewise constant function

in assortative mixing to specify whether or not the two nodes are of the same class [25]:

δ(ci, cj) =


0 if ci ̸= cj

1 if ci = cj
(5.1)

A basic mathematical formula for discretely measuring the assortative mixing in a network can

be expressed by [25]:

∑
edge(ij)

δ(ci, cj) =
1
2

∑
ij

Aijδ(ci, cj) (5.2)

where ci, cj are the node classes and δ(ci, cj) is the Kronecker’s delta function from Eq. 5.1.

The left side of the Eq. 5.2 is a summation series that iterates through an edge list and increments for

each pair of the same class. The right side of Eq. 5.2 is the matrix formula which iterates through an

adjacency matrix and increments the same way. The one-half fraction from the matrix formula is there

to remove the double counting of pairs.

Consider Fig. 5.1, a network with two classes of nodes such that one class is designated by black
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Figure 5.1: Example of assortative mixing

circles and the other by red squares. In such a network, a node can have a degree for each class. Each

node ni keeps track of the number of edges connected to nodes of the same class, denoted as degree

ksamei , as well as the number of edges connected to nodes of a different class, denoted as degree kdiffi .

The degree ksamei can be computed by Eq. 5.2. Similarly, the degree kdiffi can be computed by the same

equation, i.e. Eq. 5.2, with the exception of inverting the sign for the Kronecker’s Delta Function.

Fig. 5.1 displays these two types of degrees above each node in the form of (ksame, kdiff) which can be

used to measure the strength of the assortative mixing.

5.2 Cluster Analysis Algorithm

My graph partitioning and community detection is based on the principle of assortative mixing, but

also has distinct differences. The RCD algorithm generates two graphs, SH1 and S∆, out of the sensor

network. The graph SH1 pairs sensors si and sj that reportH1 and the distance dij between them is below

some threshold dθ. The other graph S∆ pairs sensors si and sj that report differently and are within the

same distance threshold dθ. The result is shown in Fig. 5.2, with SH1 represented as the network with

red edges and S∆ with the blue edges. Afterward, the clustering strength is measured by the difference

of degrees from the nodes in SH1 and S∆ for each disconnected component, which I refer to as the

clusters. These clusters are comprised of sensors that share the decision of H1 and are within distance

dij and remain disconnected from the rest of the network. Each node si carries two types of degrees
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Figure 5.2: RCD Clustering - illustrates the clustering method between rogue signals and randomly
selected malicious sensors

such that degrees dH1
i is from the graph SH1 and degrees d∆i is from the graph S∆.

The RCD has three requirements for graph partitioning and cluster analysis. First, it needs the

local spectrum decision ci ∈ {H0,H1} for all sensors si ∈ S. Second, there must be two sets of sensors

where SH0 = {si|ci = H0} and SH1 = {si|ci = H1}. Lastly, it needs an adjacency matrix A of size

|S| × |S| such that Aij = 1 if the distance dij < dθ; else Aij = 0, for sensors si and sj, regardless of local

decisions.

The RCD module locates k isolated clusters of sensors Ck such that sj ∈ Ck, (Aij = 1) and

(ci = cj) for sensors si, sj ∈ Ck. The RCD module’s goal is to locate isolated communities of sensors

reporting H1 (i.e. set of Ck clusters) that are distinctly separated by sensors reporting H0, i.e. sensors

in SH0 . To start, I measure the cluster density of sensors with the same class by counting all connected

pairs (si, sj) such that si, sj ∈ Ck and Aij = 1. This is computed on all sensors in Ck with:
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D(Ck) = {dH1
i }k = {

∑
sj∈Ck

(Aijδ(ci, cj))− 1 | si ∈ Ck} (5.3)

where δ(ci, cj), defined in Eq.5.1, indicates a difference in a node’s class c (i.e. the local spectrum

decision), {dH1
i }k is the set of degrees for each si such that both si and sj share an edge and report H1,

and D(Ck) is Eq. 5.3 expressed as a function.

Next, I measure the isolation of sensor si ∈ Ck from sj ∈ SH0 by counting all connected pairs

(si, sj) such that (Aij = 1). This is computed on all sensors in Ck by:

D′(Ck, SH0) = {d∆i }k = {
∑
sj∈SH0

Aijδ
′(ci, cj) | si ∈ Ck} (5.4)

δ′(ci, cj) =


0, if ci = cj

1, ifci ̸= cj

where {d∆i }k is the set of degrees for each si such that both si and sj share an edge and report a

different local spectrum decision, and D′(Ck, SH0) is Eq. 5.4 expressed as a function.

Finally, the isolated clustering strength Zk is measured by:

Zk = Z({dH1
i }k, {d∆i }k) =

∑
i d

H1
i∑

i(d
H1
i + d∆i )

(5.5)

which is used for deciding the presence of rogue signals. In the off chance that several malicious

sensors are positioned near each other, the RCD module uses a specified level of tolerance Zθ and a

required minimum cluster size Cmin to lower the sensitivity of flagging a rogue signal by mistake.

Additionally, Cmin prevents a high clustering score Zk resulting from an insignificant sized cluster. The
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pseudo-code of the RCD module is displayed in Algorithm 1.

Fig. 5.2 shows two scenarios; the RSF-45 scenario uses the same setup as Fig. 3.1 where each

rogue antenna transmits with a beamwidth of 45◦, and the SSDF-40 scenario is where 40% of the

sensors are randomly selected to become malicious and perform SSDF. The red nodes are sensors

reporting H1 and the blue nodes are sensors reporting H0. The red edges are formed when ci = cj and

dij < dθ for sensors si and sj. The blue edges are formed by the same rules except that ci ̸= cj.

Algorithm 1 The RSF Cluster Detection Module
Function:RCD(A, SH0 , SH1)
1: Initialize cluster index k← 0
2: Initialize set of protected sensors Sp
3: Initialize set of visited nodes V
4: Initialize queue Q
5: for all si ∈ SH1 do
6: if si /∈ V then
7: k← k+ 1
8: Initialize set Ck
9: add si onto Ck,V, and Q
10: while Q is not empty do
11: sq ← dequeue(Q)
12: for all sj ∈ SH1 do
13: if sj /∈ V and Aqj = 1 then
14: add sj onto Ck,V, and Q
15: end if
16: end for
17: end while
18: {dH1

i }k ← D(Ck)
19: {d∆i }k ← D′(Ck, SH0)
20: Zk ← Z({dH1

i }k, {d∆i }k))
21: if |Ck| ≥ Cmin and Zk > Zθ then
22: Sp ← Sp ∪ Ck
23: end if
24: end if
25: end for
26: return Sp
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5.3 Resilient to Exploitation

Since I use an environment that conforms to the IEEE 802.22 standard, I assume a static network of

CPE sensors. This eliminates the option of malicious SUs moving their sensors closer together in dense

clusters with the goal of exploiting the RCD module, such that it protects the reputation of malicious

sensors. It is possible that a group of malicious sensors remains in proximity to a static network, by

coincidence or otherwise, but the chances of this occurring can be reduced by increasing the minimum

cluster threshold Cmin or the cluster strength threshold Zθ.

Secondly, the RCD module only functions when the FC decision is H0 because rogue signals

are limited to causing local false alarms (i.e. H1) on attacked sensors. In other words, rogue signals

are only capable of switching local spectrum decisions from H0 to H1, so the RCD module ignores

the scenario of a misdetection. Therefore, malicious sensors attempting misdetection through SSDF

attacks will still be penalized when the FC decision is H1, whether they are clustered or not.

5.4 Defense Evaluation

I have two groups of scenarios, the RSF and SSDF attacks, for the defense simulations. The simulation

environment from Chapter 4 is reused for these simulations. The beamwidth of each rogue antenna

is 15◦, 30◦, and 45◦ for scenarios RSF-15, RSF-30, and RSF-45, respectively. The SSDF scenarios

simulate malicious sensors by randomly selecting a percentage of the sensors and raising their RSS by

20 dB from the noise floor. I randomly selected 20%, 30%, and 40% of sensors from the scenarios

SSDF-20, SSDF-30, and SSDF-40, respectively.

Fig. 5.3 shows the amount of mitigated trust damage with the RCD module under the same

scenarios. I refer to the mitigated trust damage as trust saved TS[q] and express it with:
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Figure 5.3: RCD performance - measures trust saved from Eq. 5.6

TS[q] =
TRΣ[q]− TΣ[q]
TΣ[0]− TΣ[q]

(5.6)

where TRΣ[q] is the network’s total trust on quiet period q when using the RCD module, TΣ[q] is

the network’s total trust without the RCD module (from Fig. 4.2), and TΣ[0] is the initial state of trust

scores. I use a minimum cluster size (Cmin = 5), a clustering threshold (Zθ = 0.3), and a distance

threshold (dθ = 150 m).

As shown in Fig. 5.3, each protocol benefited from my proposed defense against the RSF intru-

sion. However, the RCDmodule offered less protection to FA due to its sequential random sampling of

sensors, rather than of cross-examining all sensor reports for a more robust analysis. The spikes from

FB in Fig. 5.3 are results of protocol design from having a dynamic threshold for deciding malicious

sensors. During the spikes, FB’s dynamic threshold stabilizes as it replaces the old RSS statistics with

new data.

Fig. 5.4 compares how RCDmodule’s response to RSF and SSDF attacks in terms of the number

of sensors attacked SA and the number of sensors protected SP. The goal of my defense is to maximize

SP for the RSF scenarios and minimize it for the SSDF scenarios so that the reputations of malicious
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Figure 5.4: RCD Sensitivity - counts the number of sensors protected by the RCDmodule for RSF and
SSDF attacks

sensors are not protected. In scenario RSF-45, the strongest RSF intrusion, the RCD module protects

95% of sensors from losing trust. In contrast, the RCDmodule erroneously protects 15% of the sensors

in scenario SSDF-40. This is acceptable as 40% of malicious sensors is an unrealistic and profuse

amount of attacks in any CR network. The outcomes of Fig. 5.4 show a high resiliency against the

exploitation of SSDF attacks.
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Chapter 6

Conclusion

In my thesis, I demonstrated the RSF intrusion, a new threat to trust-based CSS protocols. The attackers

can transmit rogue signals onto groups of sensors to emulate SSDF and ruin their reputation with the

intent of having them removed from the shared spectrum sensing. My work cautions the use of trust-

based CSS protocols and warrants a line of defense against rogue signals. The RSF simulations were

conducted in a realistic environment based on the 802.22 WRAN and illustrates the impact of the RSF

intrusions on sensor reputation scores. To mitigate the trust damage, I introduced a new defense based

on community detection and cluster analysis. The simulation experiments showed that my defense

solution, the RCD module, could effectively keep the sensor reputations intact while distinguishing

rogue signals from malicious sensors.
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